Copied to
clipboard

G = C3272- 1+4order 288 = 25·32

2nd semidirect product of C32 and 2- 1+4 acting via 2- 1+4/C2×Q8=C2

metabelian, supersoluble, monomial

Aliases: C3272- 1+4, C62.282C23, (C6×Q8)⋊11S3, (C3×Q8).69D6, (C2×C12).172D6, C6.63(S3×C23), (C3×C6).62C24, C12.26D69C2, C12.59D611C2, (C6×C12).171C22, C12.114(C22×S3), (C3×C12).133C23, C34(Q8.15D6), C3⋊Dic3.50C23, C327D4.4C22, C12⋊S3.34C22, (Q8×C32).33C22, C324Q8.36C22, (Q8×C3⋊S3)⋊9C2, (Q8×C3×C6)⋊14C2, (C2×Q8)⋊7(C3⋊S3), Q8.15(C2×C3⋊S3), C2.11(C23×C3⋊S3), C4.24(C22×C3⋊S3), (C4×C3⋊S3).48C22, (C2×C3⋊S3).54C23, C22.7(C22×C3⋊S3), (C2×C6).290(C22×S3), (C2×C4).23(C2×C3⋊S3), SmallGroup(288,1012)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C3272- 1+4
C1C3C32C3×C6C2×C3⋊S3C4×C3⋊S3Q8×C3⋊S3 — C3272- 1+4
C32C3×C6 — C3272- 1+4
C1C2C2×Q8

Generators and relations for C3272- 1+4
 G = < a,b,c,d,e,f | a3=b3=c4=d2=1, e2=f2=c2, ab=ba, ac=ca, dad=eae-1=a-1, af=fa, bc=cb, dbd=ebe-1=b-1, bf=fb, dcd=c-1, ce=ec, cf=fc, de=ed, df=fd, fef-1=c2e >

Subgroups: 1412 in 438 conjugacy classes, 153 normal (9 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, Q8, Q8, C32, Dic3, C12, D6, C2×C6, C2×Q8, C2×Q8, C4○D4, C3⋊S3, C3×C6, C3×C6, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C3×Q8, 2- 1+4, C3⋊Dic3, C3×C12, C2×C3⋊S3, C62, C4○D12, S3×Q8, Q83S3, C6×Q8, C324Q8, C4×C3⋊S3, C12⋊S3, C327D4, C6×C12, Q8×C32, Q8.15D6, C12.59D6, Q8×C3⋊S3, C12.26D6, Q8×C3×C6, C3272- 1+4
Quotients: C1, C2, C22, S3, C23, D6, C24, C3⋊S3, C22×S3, 2- 1+4, C2×C3⋊S3, S3×C23, C22×C3⋊S3, Q8.15D6, C23×C3⋊S3, C3272- 1+4

Smallest permutation representation of C3272- 1+4
On 144 points
Generators in S144
(1 32 6)(2 29 7)(3 30 8)(4 31 5)(9 102 95)(10 103 96)(11 104 93)(12 101 94)(13 100 142)(14 97 143)(15 98 144)(16 99 141)(17 140 58)(18 137 59)(19 138 60)(20 139 57)(21 42 126)(22 43 127)(23 44 128)(24 41 125)(25 71 119)(26 72 120)(27 69 117)(28 70 118)(33 81 113)(34 82 114)(35 83 115)(36 84 116)(37 91 56)(38 92 53)(39 89 54)(40 90 55)(45 52 110)(46 49 111)(47 50 112)(48 51 109)(61 87 80)(62 88 77)(63 85 78)(64 86 79)(65 105 135)(66 106 136)(67 107 133)(68 108 134)(73 132 123)(74 129 124)(75 130 121)(76 131 122)
(1 23 121)(2 24 122)(3 21 123)(4 22 124)(5 127 129)(6 128 130)(7 125 131)(8 126 132)(9 16 55)(10 13 56)(11 14 53)(12 15 54)(17 112 133)(18 109 134)(19 110 135)(20 111 136)(25 62 82)(26 63 83)(27 64 84)(28 61 81)(29 41 76)(30 42 73)(31 43 74)(32 44 75)(33 118 80)(34 119 77)(35 120 78)(36 117 79)(37 103 100)(38 104 97)(39 101 98)(40 102 99)(45 65 138)(46 66 139)(47 67 140)(48 68 137)(49 106 57)(50 107 58)(51 108 59)(52 105 60)(69 86 116)(70 87 113)(71 88 114)(72 85 115)(89 94 144)(90 95 141)(91 96 142)(92 93 143)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)(129 130 131 132)(133 134 135 136)(137 138 139 140)(141 142 143 144)
(1 4)(2 3)(5 32)(6 31)(7 30)(8 29)(9 12)(10 11)(13 53)(14 56)(15 55)(16 54)(17 136)(18 135)(19 134)(20 133)(21 122)(22 121)(23 124)(24 123)(25 26)(27 28)(33 86)(34 85)(35 88)(36 87)(37 143)(38 142)(39 141)(40 144)(41 132)(42 131)(43 130)(44 129)(45 51)(46 50)(47 49)(48 52)(57 67)(58 66)(59 65)(60 68)(61 84)(62 83)(63 82)(64 81)(69 118)(70 117)(71 120)(72 119)(73 125)(74 128)(75 127)(76 126)(77 115)(78 114)(79 113)(80 116)(89 99)(90 98)(91 97)(92 100)(93 103)(94 102)(95 101)(96 104)(105 137)(106 140)(107 139)(108 138)(109 110)(111 112)
(1 9 3 11)(2 10 4 12)(5 101 7 103)(6 102 8 104)(13 124 15 122)(14 121 16 123)(17 63 19 61)(18 64 20 62)(21 53 23 55)(22 54 24 56)(25 109 27 111)(26 110 28 112)(29 96 31 94)(30 93 32 95)(33 67 35 65)(34 68 36 66)(37 127 39 125)(38 128 40 126)(41 91 43 89)(42 92 44 90)(45 118 47 120)(46 119 48 117)(49 71 51 69)(50 72 52 70)(57 88 59 86)(58 85 60 87)(73 143 75 141)(74 144 76 142)(77 137 79 139)(78 138 80 140)(81 133 83 135)(82 134 84 136)(97 130 99 132)(98 131 100 129)(105 113 107 115)(106 114 108 116)
(1 28 3 26)(2 25 4 27)(5 117 7 119)(6 118 8 120)(9 110 11 112)(10 111 12 109)(13 136 15 134)(14 133 16 135)(17 55 19 53)(18 56 20 54)(21 63 23 61)(22 64 24 62)(29 71 31 69)(30 72 32 70)(33 132 35 130)(34 129 36 131)(37 139 39 137)(38 140 40 138)(41 88 43 86)(42 85 44 87)(45 104 47 102)(46 101 48 103)(49 94 51 96)(50 95 52 93)(57 89 59 91)(58 90 60 92)(65 97 67 99)(66 98 68 100)(73 115 75 113)(74 116 76 114)(77 127 79 125)(78 128 80 126)(81 123 83 121)(82 124 84 122)(105 143 107 141)(106 144 108 142)

G:=sub<Sym(144)| (1,32,6)(2,29,7)(3,30,8)(4,31,5)(9,102,95)(10,103,96)(11,104,93)(12,101,94)(13,100,142)(14,97,143)(15,98,144)(16,99,141)(17,140,58)(18,137,59)(19,138,60)(20,139,57)(21,42,126)(22,43,127)(23,44,128)(24,41,125)(25,71,119)(26,72,120)(27,69,117)(28,70,118)(33,81,113)(34,82,114)(35,83,115)(36,84,116)(37,91,56)(38,92,53)(39,89,54)(40,90,55)(45,52,110)(46,49,111)(47,50,112)(48,51,109)(61,87,80)(62,88,77)(63,85,78)(64,86,79)(65,105,135)(66,106,136)(67,107,133)(68,108,134)(73,132,123)(74,129,124)(75,130,121)(76,131,122), (1,23,121)(2,24,122)(3,21,123)(4,22,124)(5,127,129)(6,128,130)(7,125,131)(8,126,132)(9,16,55)(10,13,56)(11,14,53)(12,15,54)(17,112,133)(18,109,134)(19,110,135)(20,111,136)(25,62,82)(26,63,83)(27,64,84)(28,61,81)(29,41,76)(30,42,73)(31,43,74)(32,44,75)(33,118,80)(34,119,77)(35,120,78)(36,117,79)(37,103,100)(38,104,97)(39,101,98)(40,102,99)(45,65,138)(46,66,139)(47,67,140)(48,68,137)(49,106,57)(50,107,58)(51,108,59)(52,105,60)(69,86,116)(70,87,113)(71,88,114)(72,85,115)(89,94,144)(90,95,141)(91,96,142)(92,93,143), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (1,4)(2,3)(5,32)(6,31)(7,30)(8,29)(9,12)(10,11)(13,53)(14,56)(15,55)(16,54)(17,136)(18,135)(19,134)(20,133)(21,122)(22,121)(23,124)(24,123)(25,26)(27,28)(33,86)(34,85)(35,88)(36,87)(37,143)(38,142)(39,141)(40,144)(41,132)(42,131)(43,130)(44,129)(45,51)(46,50)(47,49)(48,52)(57,67)(58,66)(59,65)(60,68)(61,84)(62,83)(63,82)(64,81)(69,118)(70,117)(71,120)(72,119)(73,125)(74,128)(75,127)(76,126)(77,115)(78,114)(79,113)(80,116)(89,99)(90,98)(91,97)(92,100)(93,103)(94,102)(95,101)(96,104)(105,137)(106,140)(107,139)(108,138)(109,110)(111,112), (1,9,3,11)(2,10,4,12)(5,101,7,103)(6,102,8,104)(13,124,15,122)(14,121,16,123)(17,63,19,61)(18,64,20,62)(21,53,23,55)(22,54,24,56)(25,109,27,111)(26,110,28,112)(29,96,31,94)(30,93,32,95)(33,67,35,65)(34,68,36,66)(37,127,39,125)(38,128,40,126)(41,91,43,89)(42,92,44,90)(45,118,47,120)(46,119,48,117)(49,71,51,69)(50,72,52,70)(57,88,59,86)(58,85,60,87)(73,143,75,141)(74,144,76,142)(77,137,79,139)(78,138,80,140)(81,133,83,135)(82,134,84,136)(97,130,99,132)(98,131,100,129)(105,113,107,115)(106,114,108,116), (1,28,3,26)(2,25,4,27)(5,117,7,119)(6,118,8,120)(9,110,11,112)(10,111,12,109)(13,136,15,134)(14,133,16,135)(17,55,19,53)(18,56,20,54)(21,63,23,61)(22,64,24,62)(29,71,31,69)(30,72,32,70)(33,132,35,130)(34,129,36,131)(37,139,39,137)(38,140,40,138)(41,88,43,86)(42,85,44,87)(45,104,47,102)(46,101,48,103)(49,94,51,96)(50,95,52,93)(57,89,59,91)(58,90,60,92)(65,97,67,99)(66,98,68,100)(73,115,75,113)(74,116,76,114)(77,127,79,125)(78,128,80,126)(81,123,83,121)(82,124,84,122)(105,143,107,141)(106,144,108,142)>;

G:=Group( (1,32,6)(2,29,7)(3,30,8)(4,31,5)(9,102,95)(10,103,96)(11,104,93)(12,101,94)(13,100,142)(14,97,143)(15,98,144)(16,99,141)(17,140,58)(18,137,59)(19,138,60)(20,139,57)(21,42,126)(22,43,127)(23,44,128)(24,41,125)(25,71,119)(26,72,120)(27,69,117)(28,70,118)(33,81,113)(34,82,114)(35,83,115)(36,84,116)(37,91,56)(38,92,53)(39,89,54)(40,90,55)(45,52,110)(46,49,111)(47,50,112)(48,51,109)(61,87,80)(62,88,77)(63,85,78)(64,86,79)(65,105,135)(66,106,136)(67,107,133)(68,108,134)(73,132,123)(74,129,124)(75,130,121)(76,131,122), (1,23,121)(2,24,122)(3,21,123)(4,22,124)(5,127,129)(6,128,130)(7,125,131)(8,126,132)(9,16,55)(10,13,56)(11,14,53)(12,15,54)(17,112,133)(18,109,134)(19,110,135)(20,111,136)(25,62,82)(26,63,83)(27,64,84)(28,61,81)(29,41,76)(30,42,73)(31,43,74)(32,44,75)(33,118,80)(34,119,77)(35,120,78)(36,117,79)(37,103,100)(38,104,97)(39,101,98)(40,102,99)(45,65,138)(46,66,139)(47,67,140)(48,68,137)(49,106,57)(50,107,58)(51,108,59)(52,105,60)(69,86,116)(70,87,113)(71,88,114)(72,85,115)(89,94,144)(90,95,141)(91,96,142)(92,93,143), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (1,4)(2,3)(5,32)(6,31)(7,30)(8,29)(9,12)(10,11)(13,53)(14,56)(15,55)(16,54)(17,136)(18,135)(19,134)(20,133)(21,122)(22,121)(23,124)(24,123)(25,26)(27,28)(33,86)(34,85)(35,88)(36,87)(37,143)(38,142)(39,141)(40,144)(41,132)(42,131)(43,130)(44,129)(45,51)(46,50)(47,49)(48,52)(57,67)(58,66)(59,65)(60,68)(61,84)(62,83)(63,82)(64,81)(69,118)(70,117)(71,120)(72,119)(73,125)(74,128)(75,127)(76,126)(77,115)(78,114)(79,113)(80,116)(89,99)(90,98)(91,97)(92,100)(93,103)(94,102)(95,101)(96,104)(105,137)(106,140)(107,139)(108,138)(109,110)(111,112), (1,9,3,11)(2,10,4,12)(5,101,7,103)(6,102,8,104)(13,124,15,122)(14,121,16,123)(17,63,19,61)(18,64,20,62)(21,53,23,55)(22,54,24,56)(25,109,27,111)(26,110,28,112)(29,96,31,94)(30,93,32,95)(33,67,35,65)(34,68,36,66)(37,127,39,125)(38,128,40,126)(41,91,43,89)(42,92,44,90)(45,118,47,120)(46,119,48,117)(49,71,51,69)(50,72,52,70)(57,88,59,86)(58,85,60,87)(73,143,75,141)(74,144,76,142)(77,137,79,139)(78,138,80,140)(81,133,83,135)(82,134,84,136)(97,130,99,132)(98,131,100,129)(105,113,107,115)(106,114,108,116), (1,28,3,26)(2,25,4,27)(5,117,7,119)(6,118,8,120)(9,110,11,112)(10,111,12,109)(13,136,15,134)(14,133,16,135)(17,55,19,53)(18,56,20,54)(21,63,23,61)(22,64,24,62)(29,71,31,69)(30,72,32,70)(33,132,35,130)(34,129,36,131)(37,139,39,137)(38,140,40,138)(41,88,43,86)(42,85,44,87)(45,104,47,102)(46,101,48,103)(49,94,51,96)(50,95,52,93)(57,89,59,91)(58,90,60,92)(65,97,67,99)(66,98,68,100)(73,115,75,113)(74,116,76,114)(77,127,79,125)(78,128,80,126)(81,123,83,121)(82,124,84,122)(105,143,107,141)(106,144,108,142) );

G=PermutationGroup([[(1,32,6),(2,29,7),(3,30,8),(4,31,5),(9,102,95),(10,103,96),(11,104,93),(12,101,94),(13,100,142),(14,97,143),(15,98,144),(16,99,141),(17,140,58),(18,137,59),(19,138,60),(20,139,57),(21,42,126),(22,43,127),(23,44,128),(24,41,125),(25,71,119),(26,72,120),(27,69,117),(28,70,118),(33,81,113),(34,82,114),(35,83,115),(36,84,116),(37,91,56),(38,92,53),(39,89,54),(40,90,55),(45,52,110),(46,49,111),(47,50,112),(48,51,109),(61,87,80),(62,88,77),(63,85,78),(64,86,79),(65,105,135),(66,106,136),(67,107,133),(68,108,134),(73,132,123),(74,129,124),(75,130,121),(76,131,122)], [(1,23,121),(2,24,122),(3,21,123),(4,22,124),(5,127,129),(6,128,130),(7,125,131),(8,126,132),(9,16,55),(10,13,56),(11,14,53),(12,15,54),(17,112,133),(18,109,134),(19,110,135),(20,111,136),(25,62,82),(26,63,83),(27,64,84),(28,61,81),(29,41,76),(30,42,73),(31,43,74),(32,44,75),(33,118,80),(34,119,77),(35,120,78),(36,117,79),(37,103,100),(38,104,97),(39,101,98),(40,102,99),(45,65,138),(46,66,139),(47,67,140),(48,68,137),(49,106,57),(50,107,58),(51,108,59),(52,105,60),(69,86,116),(70,87,113),(71,88,114),(72,85,115),(89,94,144),(90,95,141),(91,96,142),(92,93,143)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128),(129,130,131,132),(133,134,135,136),(137,138,139,140),(141,142,143,144)], [(1,4),(2,3),(5,32),(6,31),(7,30),(8,29),(9,12),(10,11),(13,53),(14,56),(15,55),(16,54),(17,136),(18,135),(19,134),(20,133),(21,122),(22,121),(23,124),(24,123),(25,26),(27,28),(33,86),(34,85),(35,88),(36,87),(37,143),(38,142),(39,141),(40,144),(41,132),(42,131),(43,130),(44,129),(45,51),(46,50),(47,49),(48,52),(57,67),(58,66),(59,65),(60,68),(61,84),(62,83),(63,82),(64,81),(69,118),(70,117),(71,120),(72,119),(73,125),(74,128),(75,127),(76,126),(77,115),(78,114),(79,113),(80,116),(89,99),(90,98),(91,97),(92,100),(93,103),(94,102),(95,101),(96,104),(105,137),(106,140),(107,139),(108,138),(109,110),(111,112)], [(1,9,3,11),(2,10,4,12),(5,101,7,103),(6,102,8,104),(13,124,15,122),(14,121,16,123),(17,63,19,61),(18,64,20,62),(21,53,23,55),(22,54,24,56),(25,109,27,111),(26,110,28,112),(29,96,31,94),(30,93,32,95),(33,67,35,65),(34,68,36,66),(37,127,39,125),(38,128,40,126),(41,91,43,89),(42,92,44,90),(45,118,47,120),(46,119,48,117),(49,71,51,69),(50,72,52,70),(57,88,59,86),(58,85,60,87),(73,143,75,141),(74,144,76,142),(77,137,79,139),(78,138,80,140),(81,133,83,135),(82,134,84,136),(97,130,99,132),(98,131,100,129),(105,113,107,115),(106,114,108,116)], [(1,28,3,26),(2,25,4,27),(5,117,7,119),(6,118,8,120),(9,110,11,112),(10,111,12,109),(13,136,15,134),(14,133,16,135),(17,55,19,53),(18,56,20,54),(21,63,23,61),(22,64,24,62),(29,71,31,69),(30,72,32,70),(33,132,35,130),(34,129,36,131),(37,139,39,137),(38,140,40,138),(41,88,43,86),(42,85,44,87),(45,104,47,102),(46,101,48,103),(49,94,51,96),(50,95,52,93),(57,89,59,91),(58,90,60,92),(65,97,67,99),(66,98,68,100),(73,115,75,113),(74,116,76,114),(77,127,79,125),(78,128,80,126),(81,123,83,121),(82,124,84,122),(105,143,107,141),(106,144,108,142)]])

57 conjugacy classes

class 1 2A2B2C2D2E2F3A3B3C3D4A···4F4G4H4I4J6A···6L12A···12X
order122222233334···444446···612···12
size1121818181822222···2181818182···24···4

57 irreducible representations

dim1111122244
type++++++++-
imageC1C2C2C2C2S3D6D62- 1+4Q8.15D6
kernelC3272- 1+4C12.59D6Q8×C3⋊S3C12.26D6Q8×C3×C6C6×Q8C2×C12C3×Q8C32C3
# reps164414121618

Matrix representation of C3272- 1+4 in GL6(𝔽13)

1210000
1200000
001000
000100
000010
000001
,
1210000
1200000
0012100
0012000
0000121
0000120
,
100000
010000
00111230
0011003
003721
00610123
,
0120000
1200000
001211108
0010153
0073110
001061112
,
0120000
1200000
009200
0011400
000292
0020114
,
1200000
0120000
0083712
00101116
0050510
000532

G:=sub<GL(6,GF(13))| [12,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,12,0,0,0,0,1,0,0,0,0,0,0,0,12,12,0,0,0,0,1,0,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,11,1,3,6,0,0,12,10,7,10,0,0,3,0,2,12,0,0,0,3,1,3],[0,12,0,0,0,0,12,0,0,0,0,0,0,0,12,10,7,10,0,0,11,1,3,6,0,0,10,5,1,11,0,0,8,3,10,12],[0,12,0,0,0,0,12,0,0,0,0,0,0,0,9,11,0,2,0,0,2,4,2,0,0,0,0,0,9,11,0,0,0,0,2,4],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,8,10,5,0,0,0,3,11,0,5,0,0,7,1,5,3,0,0,12,6,10,2] >;

C3272- 1+4 in GAP, Magma, Sage, TeX

C_3^2\rtimes_72_-^{1+4}
% in TeX

G:=Group("C3^2:7ES-(2,2)");
// GroupNames label

G:=SmallGroup(288,1012);
// by ID

G=gap.SmallGroup(288,1012);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,120,219,100,675,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^3=c^4=d^2=1,e^2=f^2=c^2,a*b=b*a,a*c=c*a,d*a*d=e*a*e^-1=a^-1,a*f=f*a,b*c=c*b,d*b*d=e*b*e^-1=b^-1,b*f=f*b,d*c*d=c^-1,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c^2*e>;
// generators/relations

׿
×
𝔽